
March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 1

Web App Access Control Design

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 2

What is Access Control / Authorization?

Authorization is the process where a system
determines if a specific user has access to a
particular resource

The intent of authorization is to ensure that a user

only accesses system functionality to which he is
entitled

Role based access control (RBAC) is commonly used

to manage permissions within an application

RBAC has significant limits and does not address
horizontal access control issues

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 3

Attacks on Access Control

Vertical Access Control Attacks
A standard user accessing administration functionality

Horizontal Access Control attacks
Same role, but accessing another user's private data

Business Logic Access Control Attacks
Abuse of workflow

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 4

Access Control Issues

Many applications utilize an “all or nothing”
approach
Once authenticated all users have equal privilege levels

Authorization logic often relies on Security By

Obscurity and assumes:
Users won’t find unlinked or “hidden” paths/functionality.
Users will not find and tamper with “obscured” client side

parameters (i.e. “hidden” form fields, cookies, etc)

Applications with multiple permission levels/roles
often increases the possibility of conflicting
permission sets resulting in unanticipated privileges

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 5

Access Control Anti-Patterns

Hard-coded role checks in application code
Lack of centralized access control logic
Untrusted data driving access control decisions
Access control that is “open by default”
Lack of addressing horizontal access control in a

standardized way (if at all)
Access control logic that needs to be manually

added to every endpoint in code

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 6

Hard Coded Roles

void editProfile(User u, EditUser eu) {
 if (u.isManager()) {
 editUser(eu)
 }
}

What needs to occur in order to change the
access control policy of this feature?

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 7

Hard Coded Roles

Makes “proving” the policy of an application
difficult for audit or Q/A purposes

Any time access control policy needs to change,
new code need to be pushed

Fragile, easy to make mistakes

Is not “automatic” and needs to be “hand-
coded” within each application feature

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 8

Order Specific Operations

Imagine the following parameters
 http://example.com/buy?action=chooseDataPackage
 http://example.com/buy?action=customizePackage
 http://example.com/buy?action=makePayment
 http://example.com/buy?action=downloadData

Can an attacker control the sequence?

What step would a “threat agent” like to skip?

Can an attacker abuse this with concurrency?

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 9

Never Depend on Untrusted Data

Never trust request data for access control decisions

Never make access control decisions in JavaScript

Never make authorization decisions based solely on

hidden fields
cookie values
 form parameters
URL parameters
anything else from the request

Never depend on the order of values sent from the client

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 10

Access Control Issues
 Many administrative interfaces require only a password for

authentication

 Shared accounts combined with a lack of auditing and logging make
it extremely difficult to differentiate between malicious and honest
administrators

 Administrative interfaces are often not designed as “secure” as user-
level interfaces given the assumption that administrators are trusted
users

 Authorization/Access Control relies on client-side information (e.g.,
hidden fields)

<input type=“text" name=“fname" value=“Derek”>

<input type=“text" name=“lname" value=“Jeter”>

<input type=“hidden" name=“usertype" value=“admin”>

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 11

Attacking Access Controls

Elevation of privileges

Disclosure of confidential data
Compromising admin-level accounts often results in

access to user’s confidential data

Data tampering
Privilege levels do not distinguish users who can only

view data and users permitted to modify data

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 12

Testing for Broken Access Control

 Attempt to access administrative components or functions as
an anonymous or regular user
Scour HTML source for “interesting” hidden form fields
Test web accessible directory structure for names like

admin, administrator, manager, etc (i.e. attempt to directly
browse to “restricted” areas)

 Determine how administrators are authenticated. Ensure
that adequate authentication is used and enforced

 For each user role, ensure that only the appropriate pages or
components are accessible for that role

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 13

Access Control Best Practices, I

 Implement role based access control to assign permissions to
application users for vertical access control requirements

 Implement data-contextual access control to assign

permissions to application users in the context of specific data
items for horizontal access control requirements

 Avoid assigning permissions on a per-user basis

 Perform consistent authorization checking routines on all

application pages

 Where applicable, apply DENY privileges last, issue ALLOW
privileges on a case-by-case basis

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 14

Access Control Best Practices, II

 Build a centralized access control mechanism

 Code to the activity, not the role

 Centralize access control logic

 Design access control as a filter

 Deny by default, fail securely

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 15

Access Control Best Practices, III

 Apply same core logic to presentation and server-side access
control decisions

 Server-side trusted data should drive access control

 Be able to change a users role in real time

 Build grouping capability for users and permissions

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 16

Best Practice: Code to the Activity

if (AC.hasAccess(ARTICLE_EDIT)) {

 //execute activity

}

Code it once, never needs to change again
Implies policy is persisted/centralized in some

way
Requires more design/work up front to get right

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 17

Best Practice: Centralized ACL Controller

Define a centralized access controller

ACLService.isAuthorized(ACTION_CONSTANT)
ACLService.assertAuthorized(ACTION_CONSTANT)

Access control decisions go through these simple API’s

Centralized logic to drive policy behavior and persistence

May contain data-driven access control policy

information

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 18

Using a Centralized Access Controller

In Presentation Layer
if (isAuthorized(VIEW_LOG_PANEL))
{
 <h2>Here are the logs</h2>
 <%=getLogs();%/>
}

In Controller
try (assertAuthorized(DELETE_USER))
{
 deleteUser();
}

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 19

Best Practice: Verifying policy server-side

Keep user identity verification in session

Load entitlements server side from trusted
sources

Force authorization checks on ALL requests
JS file, image, AJAX and FLASH requests as well!
Force this check using a filter if possible

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 20

SQL Integrated Access Control

Example Feature

 http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering

 select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!

 select * from messages where messageid = 2356342 AND

messages.message_owner = <userid_from_session>

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 21

Defenses Against Access Control Attacks

Further restrict access to local administrator interfaces by only allowing
access from specific IP addresses. The following methods could be
used to restrict access based on IP address.

Programmatically

 .NET:
– HttpRequest object’s UserHostAddress()
– Request.UserHostName()

 J2EE:
– ServletRequest object’s getRemoteAddr()
– getRemoteHost

Per directory basis via web server configuration

 IPSec policy

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 22

protected void Application_BeginRequest(object sender, EventArgs e) {
 // Get request.
 HttpRequest request = base.Request;

 // Get UserHostAddress property.
 string address = request.UserHostAddress;

 If address.equals = properties.ipaddress
 {
 // Write to response.
 base.Response.Write(address);

 // Done.
 base.CompleteRequest();
 }
}

IP Filtering .NET Code Sample

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 23

Authorization Models

.NET (enable in web.config)
File authorization (active when use Windows

authentication)
URL authorization (maps users and roles to pieces of

URL namespace)

J2EE
Declarative (defined in deployment descriptors of

container components)
Programmatic (extends declarative)
Custom-coded (not recommended!)

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 24

Declarative .NET Authorization

Enforce permissions-based access to pages
Web.config: Web Container authorization-constraint

example
 /admin/ is limited to “Admin” users

<location path = “/admin/”>
 <system.web>
 <authorization>
 <allow roles = “Admin” />
 <deny users = “*” />
 </authorization>
 <system.web>
</location>

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 25

Declarative J2EE Authorization

Enforce permissions-based access to servlets and
EJB methods
 Web.xml: Web Container authorization-constraint example
 the getBalance transaction is limited to Authorized users

<security-constraint>
 <web-resource-collection>
 <url-pattern>/action/getBalance*</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>AuthorizedUser</role-name>
 </auth-constraint>
</security-constraint>

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 26

J2EE Programmatic Authorization

Extend declarative security using J2EE programmatic
security for each web and EJB container
Use java.security API methods available to the

HttpServletRequest object (getRemoteUser(),
isUserInRole(), etc)

Java.security.Principal principal =

request.getUserPrincipal();

String remoteUser = principal.getName();

NOTE: J2EE provides same security model for EJBs as for web
container. Declarative security is defined in bean’s deployment
descriptor.

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 27

Data Contextual Access Control

Data Contextual / Horizontal Access Control API examples

ACLService.isAuthorized(EDIT_ORG, 142)
ACLService.assertAuthorized(VIEW_ORG, 900)

Long form

isAuthorized(user, EDIT_ORG,
Organization.class, 14)

Essentially checking if the user has the right role in the

context of a specific object
Protecting data a the lowest level!

March 2012 Access Control v4.1 Eoin Keary and Jim Manico Page 28

Data Contextual Access Control

User
User ID User Name

Role/Activity
Role/Activity ID Role/Activity Name

Entitlement / Privilege

User ID Role/Activity ID Data Type ID Data Instance Id

Data Type
Data ID Data Name

	Web App Access Control Design
	What is Access Control / Authorization?
	Attacks on Access Control
	Access Control Issues
	Access Control Anti-Patterns
	Hard Coded Roles
	Hard Coded Roles
	Order Specific Operations
	Never Depend on Untrusted Data
	Access Control Issues
	Attacking Access Controls
	Testing for Broken Access Control
	Access Control Best Practices, I
	Access Control Best Practices, II
	Access Control Best Practices, III
	Best Practice: Code to the Activity
	Best Practice: Centralized ACL Controller
	Using a Centralized Access Controller
	Best Practice: Verifying policy server-side
	SQL Integrated Access Control
	Defenses Against Access Control Attacks
	Slide Number 22
	Authorization Models
	Declarative .NET Authorization
	Declarative J2EE Authorization
	J2EE Programmatic Authorization
	Data Contextual Access Control
	Data Contextual Access Control

